login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

O.g.f. equals the square of the e.g.f. of A291561.
1

%I #12 Aug 16 2018 13:28:59

%S 1,10,130,2100,40950,943740,25269300,774635400,26836251750,

%T 1038607069500,44448725821500,2084869401615000,106355178306877500,

%U 5861473946222895000,346999395775257225000,21956626245257906202000,1478562610889805715023750,105561794005139231136877500,7963731010308915234880987500,632966979266333111428303275000,52862553418201438508049805852500

%N O.g.f. equals the square of the e.g.f. of A291561.

%C A291561 is a diagonal in triangle A291560: a(n) = -A291560(n+1, n) for n >= 1; the e.g.f. of triangle A291560 equals arcsin( k*sin(x) ).

%e O.g.f.: A(x) = x^2 + 10*x^3 + 130*x^4 + 2100*x^5 + 40950*x^6 + 943740*x^7 + 25269300*x^8 + 774635400*x^9 + 26836251750*x^10 + 1038607069500*x^11 + 44448725821500*x^12 + 2084869401615000*x^13 + 106355178306877500*x^14 + 5861473946222895000*x^15 + 346999395775257225000*x^16 + 21956626245257906202000*x^17 + 1478562610889805715023750*x^18 + ...

%e such that the square root of the g.f. equals the e.g.f. of A291561, which begins:

%e A(x)^(1/2) = x + 10*x^2/2! + 315*x^3/3! + 18900*x^4/4! + 1819125*x^5/5! + 255405150*x^6/6! + 49165491375*x^7/7! + 12417798393000*x^8/8! + 3981456609755625*x^9/9! + 1579311121869731250*x^10/10! + ... + A291561(n)*x^n/n! + ...

%o (PARI) {A291560(n, r) = (2*n-1)! * polcoeff( polcoeff( asin( k*sin(x + O(x^(2*n)))), 2*n-1, x), 2*r-1, k)}

%o {a(n) = polcoeff( sum(m=1,n,-A291560(m+1, m) * x^m / m! +x*O(x^n) )^2, n)}

%o for(n=2, 25, print1(a(n), ", "))

%Y Cf. A291561, A291560.

%K nonn

%O 2,2

%A _Paul D. Hanna_, Sep 18 2017