%I #13 Dec 30 2018 17:04:06
%S 13,3523,2035550,1421177130,1055597813091,812108624237833,
%T 640086212334600319,513617627395229165708,417872608954804473932525,
%U 343735500499416537210021983
%N Number of 5-regular maps with 2n vertices on the torus, up to orientation-preserving and orientation-reversing isomorphisms.
%H E. Krasko, A. Omelchenko, <a href="https://arxiv.org/abs/1709.03230">Enumeration of r-regular Maps on the Torus. Part II: Enumeration of Unsensed Maps</a>, arXiv preprint arXiv:1709.03230[math.CO], 2017.
%H E. Krasko, A. Omelchenko, <a href="https://doi.org/10.1016/j.disc.2018.09.004">Enumeration of r-regular maps on the torus. Part II: Unsensed maps</a>, Discrete Mathematics, Volume 342, Issue 2, February 2019, pp. 600-614.
%Y Cf. A292405, A292468, A292110.
%K nonn,more
%O 1,1
%A _N. J. A. Sloane_, Sep 20 2017