login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 5-regular maps with 2n vertices on the torus, up to orientation-preserving and orientation-reversing isomorphisms.
3

%I #13 Dec 30 2018 17:04:06

%S 13,3523,2035550,1421177130,1055597813091,812108624237833,

%T 640086212334600319,513617627395229165708,417872608954804473932525,

%U 343735500499416537210021983

%N Number of 5-regular maps with 2n vertices on the torus, up to orientation-preserving and orientation-reversing isomorphisms.

%H E. Krasko, A. Omelchenko, <a href="https://arxiv.org/abs/1709.03230">Enumeration of r-regular Maps on the Torus. Part II: Enumeration of Unsensed Maps</a>, arXiv preprint arXiv:1709.03230[math.CO], 2017.

%H E. Krasko, A. Omelchenko, <a href="https://doi.org/10.1016/j.disc.2018.09.004">Enumeration of r-regular maps on the torus. Part II: Unsensed maps</a>, Discrete Mathematics, Volume 342, Issue 2, February 2019, pp. 600-614.

%Y Cf. A292405, A292468, A292110.

%K nonn,more

%O 1,1

%A _N. J. A. Sloane_, Sep 20 2017