Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Sep 08 2022 08:46:19
%S 0,7,7,17,13,71,19,37,59,47,31,149,37,67,43,263,181,227,1091,97,61,
%T 107,67,1433,73,127,79,137,199,383,701,157,97,167,103,461,109,487,269,
%U 197,283,2531,127,739,311,227,139,617,2861,643,151,257,157,1979,163,277
%N a(n) = least prime p such that 2*p + 1 equals (2*n - 1)*q where q is a prime, or 0 if no such p exists.
%C Conjecture: 7 <= a(n) <= 4*n^2 - 5*n + 1 for n > 1. This conjecture implies that for every odd k > 1 there exist two primes p and q < 2*k such that k = (2*p + 1)/q.
%C Every positive term belongs to A053176.
%H Arkadiusz Wesolowski, <a href="/A292084/b292084.txt">Table of n, a(n) for n = 1..10000</a>
%o (Magma) lst:=[]; for n in [2..56] do q:=1; repeat q+:=2; p:=Truncate((2*n*q-q-1)/2); until IsPrime(p) and IsPrime(q); Append(~lst, p); end for; [0] cat lst;
%o (PARI) a(n) = {if (n==1, return(0)); forprime(p=3, , q = (2*p+1)/(2*n-1); if ((denominator(q) == 1) && isprime(q), return (p)););} \\ _Michel Marcus_, Sep 16 2017
%Y Cf. A053176, A292083.
%K nonn
%O 1,2
%A _Arkadiusz Wesolowski_, Sep 08 2017