OFFSET
1,4
COMMENTS
Wiener index of the n-tetrahedral graph for n >= 6.
LINKS
Eric Weisstein's World of Mathematics, Johnson Graph.
Eric Weisstein's World of Mathematics, Tetrahedral Graph.
Eric Weisstein's World of Mathematics, Wiener Index.
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
a(n) = (n - 3)*(n - 2)^2*(n - 1)^2*n/24.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: -6*x^4*(1 + 3*x + x^2)/(-1 + x)^7.
From Amiram Eldar, Apr 16 2022: (Start)
Sum_{n>=4} 1/a(n) = 119/3 - 4*Pi^2.
Sum_{n>=4} (-1)^n/a(n) = 67/3 - 32*log(2). (End)
MATHEMATICA
Table[(n - 3) (n - 2)^2 (n - 1)^2 n/24, {n, 20}]
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 0, 6, 60, 300, 1050}, 20]
CoefficientList[Series[-((6 x^3 (1 + 3 x + x^2))/(-1 + x)^7), {x, 0, 20}], x]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Sep 08 2017
STATUS
approved