Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Sep 08 2017 09:33:09
%S 0,6,52,228,708,1778,3864,7560,13656,23166,37356,57772,86268,125034,
%T 176624,243984,330480,439926,576612,745332,951412,1200738,1499784,
%U 1855640,2276040,2769390,3344796,4012092,4781868,5665498,6675168,7823904,9125600,10595046
%N Wiener index of the n X n king graph.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/KingGraph.html">King Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WienerIndex.html">Wiener Index</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F a(n) = (n - 1)*n*(n + 1)*(7*n^2 + 2)/30.
%F a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
%F G.f.: 2*x^2*(3 + 8*x + 3*x^2)/(1 - x)^6.
%t Table[(n - 1) n (n + 1) (7 n^2 + 2)/30, {n, 40}]
%t LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 6, 52, 228, 708, 1778}, 20]
%t CoefficientList[Series[2 x (3 + 8 x + 3 x^2)/(1 - x)^6, {x, 0, 20}], x]
%K nonn,easy
%O 1,2
%A _Eric W. Weisstein_, Sep 08 2017