login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Im((-i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
4

%I #25 Sep 09 2017 03:20:19

%S 0,1,1,1,1,1,0,0,-1,-2,-3,-4,-6,-7,-9,-10,-12,-13,-15,-15,-16,-16,-16,

%T -14,-13,-9,-6,0,5,14,22,34,45,60,74,93,110,132,152,177,199,226,249,

%U 277,300,328,348,373,389,408,417,428,425,424,407,389,352,314,252

%N G.f.: Im((-i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).

%H Robert Israel, <a href="/A292052/b292052.txt">Table of n, a(n) for n = 0..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/q-PochhammerSymbol.html">q-Pochhammer Symbol</a>.

%F (-i*x; x)_inf is the g.f. for A292042(n) + i*a(n).

%F a(n) = -A292043(n).

%e Product_{k>=1} (1 + i*x^k) = 1 + (0+1i)*x + (0+1i)*x^2 + (-1+1i)*x^3 + (-1+1i)*x^4 + (-2+1i)*x^5 + (-2+0i)*x^6 + (-3+0i)*x^7 + ...

%p N:= 100: # to get a(0)..a(N)

%p P:= mul(1+I*x^k, k=1..N):

%p S:= series(P, x, N+1):

%p seq(evalc(Im(coeff(S,x,j))),j=0..N); # _Robert Israel_, Sep 08 2017

%t Im[CoefficientList[Series[QPochhammer[-I*x, x], {x, 0, 100}], x]] (* _Vaclav Kotesovec_, Sep 09 2017 *)

%Y Cf. A278399, A278400, A278420, A292042, A292043.

%K sign,look

%O 0,10

%A _Seiichi Manyama_, Sep 08 2017