Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Jan 19 2021 21:53:28
%S 1,0,0,-1,-1,-2,-2,-3,-3,-4,-3,-4,-3,-3,-1,-1,2,3,7,9,14,16,23,26,33,
%T 37,45,48,57,60,68,70,77,76,82,78,80,72,70,55,48,26,11,-19,-42,-84,
%U -116,-169,-213,-278,-333,-413,-479,-572,-651,-757,-846,-965,-1062
%N G.f.: Re((i*x; x)_inf), where (a; q)_inf is the q-Pochhammer symbol, i = sqrt(-1).
%H Seiichi Manyama, <a href="/A292042/b292042.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/q-PochhammerSymbol.html">q-Pochhammer Symbol</a>.
%F ( i*x; x)_inf is the g.f. for a(n) + i*A292043(n).
%F (-i*x; x)_inf is the g.f. for a(n) + i*A292052(n).
%F a(n)^2 + A292043(n)^2 = A278420(n). - _Vaclav Kotesovec_, Sep 08 2017
%F From _Peter Bala_, Jan 15 2021: (Start)
%F G.f.: A(x) = Sum_{n >= 0} (-1)^n*x^(n*(2*n+1))/Product_{k = 1..2*n} (1 - x^k). Cf. A035294.
%F Conjectural g.f.: A(x) = (1/2)*Sum_{n >= 0} (-x)^(n*(n-1)/2)/Product_{k = 1..n} (1 - x^k). (End)
%e Product_{k>=1} (1 - i*x^k) = 1 + (0-1i)*x + (0-1i)*x^2 + (-1-1i)*x^3 + (-1-1i)*x^4 + (-2-1i)*x^5 + (-2+0i)*x^6 + (-3+0i)*x^7 + ...
%p N:= 100:
%p S := convert(series( add( (-1)^n*x^(n*(2*n+1))/(mul(1 - x^k,k = 1..2*n)), n = 0..floor(sqrt(N/2)) ), x, N+1 ), polynom):
%p seq(coeff(S, x, n), n = 0..N); # _Peter Bala_, Jan 15 2021
%t Re[CoefficientList[Series[QPochhammer[I*x, x], {x, 0, 100}], x]] (* _Vaclav Kotesovec_, Sep 08 2017 *)
%Y Cf. A035294, A278399, A278400, A278420, A292043, A292052.
%K sign
%O 0,6
%A _Seiichi Manyama_, Sep 08 2017