login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291988
Expansion of 1/((1-x)*(1-2*x^2)*(1-3*x^3)*(1-4*x^4)*(1-5*x^5)).
3
1, 1, 3, 6, 14, 25, 50, 84, 165, 280, 503, 826, 1477, 2386, 4067, 6625, 11032, 17605, 29039, 45820, 74708, 117410, 187691, 293155, 467733, 724421, 1140157, 1763581, 2758717, 4238285, 6599926, 10082054, 15609032, 23819315, 36607147, 55644926, 85380815, 129185681
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,2,1,1,-5,-7,-14,7,19,26,10,20,-60,-120,120).
FORMULA
a(n) = a(n-1) + 2*a(n-2) + a(n-3) + a(n-4) - 5*a(n-5) - 7*a(n-6) - 14*a(n-7) + 7*a(n-8) + 19*a(n-9) + 26*a(n-10) + 10*a(n-11) + 20*a(n-12) - 60*a(n-13) - 120*a(n-14) + 120*a(n-15) for n >= 16. - Muniru A Asiru, Sep 07 2017
MATHEMATICA
CoefficientList[Series[1/Times@@Table[1-n x^n, {n, 5}], {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 2, 1, 1, -5, -7, -14, 7, 19, 26, 10, 20, -60, -120, 120}, {1, 1, 3, 6, 14, 25, 50, 84, 165, 280, 503, 826, 1477, 2386, 4067}, 40] (* Harvey P. Dale, Aug 10 2021 *)
PROG
(PARI) Vec(1/((1-x)*(1-2*x^2)*(1-3*x^3)*(1-4*x^4)*(1-5*x^5)) + O(x^100))
(GAP)
a:=[1, 1, 3, 6, 14, 25, 50, 84, 165, 280, 503, 826, 1477, 2386, 4067];;
for n in [16..10^2] do a[n]:=a[n-1]+2*a[n-2]+a[n-3]+a[n-4]-5*a[n-5]-7*a[n-6]-14*a[n-7]+7*a[n-8]+19*a[n-9]+26*a[n-10]+10*a[n-11]+20*a[n-12]-60*a[n-13]-120*a[n-14]+120*a[n-15]; od; a; # Muniru A Asiru, Sep 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Sep 07 2017
STATUS
approved