OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Prime Sums
EXAMPLE
240 is in the sequence because it can be written in exactly three ways as a sum of consecutive primes: 113 + 127, 53 + 59 + 61 + 67, and 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43.
PROG
(Magma) lst1:=[]; lst3:=[]; r:=3263; s:=PrimesUpTo(Floor(r-r/3)); t:=#s; y:=0; w:=0; z:=1; while y le r do y+:=NthPrime(z); w+:=1; z+:=1; end while; for q in [1..NthPrime(w-1)] do for a in [1..t-q] do c:=&+[s[b]: b in [a..a+q]]; if c gt r then break; else Append(~lst1, c); end if; end for; end for; lst2:=Sort(lst1); x:=#lst2; for n in [1..r] do d:=Position(lst2, n); if d ge 1 and d+2 le x then e:=[lst2[f]: f in [d..d+2]]; if Min(e) eq Max(e) then if d+3 gt x then Append(~lst3, n); else if not lst2[d+3] eq n then Append(~lst3, n); end if; end if; end if; end if; end for; lst3;
CROSSREFS
KEYWORD
nonn
AUTHOR
Arkadiusz Wesolowski, Sep 05 2017
STATUS
approved