login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A291749 Expansion of Product_{k>=1} (1 + x^(2*k^2 + 1)). 2
1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,74

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..100000

FORMULA

a(n) ~ exp(3 * Pi^(1/3) * ((sqrt(2)-1) * Zeta(3/2))^(2/3) * n^(1/3)/4) * ((sqrt(2)-1) * Zeta(3/2))^(1/3) / (2 * sqrt(6) * Pi^(1/3) * n^(5/6)).

MATHEMATICA

nmax = 200; CoefficientList[Series[Product[(1 + x^(2*k^2 + 1)), {k, 1, nmax}], {x, 0, nmax}], x]

nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[4]] = 1; Do[Do[poly[[j + 1]] += poly[[j - 2*k^2]], {j, nmax, 2*k^2 + 1, -1}]; , {k, 2, Sqrt[(nmax - 1)/2] + 1}]; poly

CROSSREFS

Cf. A033461, A291748.

Sequence in context: A007949 A191265 A320003 * A253786 A078595 A301989

Adjacent sequences:  A291746 A291747 A291748 * A291750 A291751 A291752

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Aug 31 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 8 13:59 EST 2021. Contains 341949 sequences. (Running on oeis4.)