Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Oct 04 2023 03:41:18
%S 1,2,8,44,256,1512,9056,54896,335872,2069774,12827888,79875996,
%T 499305472,3131436856,19694403520,124165133424,784478240768,
%U 4965659813668,31484486937512,199923173603596,1271192603065856,8092551782518688,51574780342740256,329022223268286288,2100934234342260736
%N a(n) = [x^n] Product_{k>=0} ((1 + x^(2*k+1))/(1 - x^(2*k+1)))^n.
%C From _Peter Bala_, Apr 18 2023: (Start)
%C The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and all positive integers n and k.
%C Conjecture: the supercongruence a(p) == 2*p + 2 (mod p^3) holds for all primes p >= 5. Cf. A270919. (End)
%H Vaclav Kotesovec, <a href="/A291697/b291697.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = A289522(n,n).
%F a(n) ~ c * d^n / sqrt(n), where d = 6.52085730573545526010335599231748172235904... and c = 0.296494808714349908707366708893... - _Vaclav Kotesovec_, Aug 30 2017
%t Table[SeriesCoefficient[Product[((1 + x^(2 k + 1))/(1 - x^(2 k + 1)))^n, {k, 0, n}], {x, 0, n}], {n, 0, 24}]
%t Table[SeriesCoefficient[(QPochhammer[-x, x^2]/QPochhammer[x, x^2])^n, {x, 0, n}], {n, 0, 24}]
%t (* Calculation of constant d: *) 1/r /. FindRoot[{s == QPochhammer[-r*s, r^2*s^2] / QPochhammer[r*s, r^2*s^2], QPochhammer[r*s, r^2*s^2] + QPochhammer[r*s, r^2*s^2]*((QPolyGamma[0, Log[-r*s]/Log[r^2*s^2], r^2*s^2] - QPolyGamma[0, Log[r*s]/Log[r^2*s^2], r^2*s^2]) / Log[r^2*s^2]) + 2*r^2*s^2*Derivative[0, 1][QPochhammer][r*s, r^2*s^2] == 2*r^2*s*Derivative[0, 1][QPochhammer][-r*s, r^2*s^2]}, {r, 1/8}, {s, 1}, WorkingPrecision -> 120] (* _Vaclav Kotesovec_, Oct 04 2023 *)
%Y Main diagonal of A289522.
%Y Cf. A080054, A008705, A270919, A361008, A362408.
%K nonn
%O 0,2
%A _Ilya Gutkovskiy_, Aug 30 2017