login
Number of permutations p of [2n] such that 0p has a nonincreasing jump sequence beginning with n.
3

%I #13 Aug 30 2021 09:39:33

%S 1,1,5,36,327,3392,38795,469662,5935728,77416352,1035050705,

%T 14094000938,195075365778,2734475097609,38747262233793,

%U 554199475506095,7990492729051526,115995691148658656,1694340616136589743,24882428969673439384,367160435328847044586

%N Number of permutations p of [2n] such that 0p has a nonincreasing jump sequence beginning with n.

%C An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here.

%H Alois P. Heinz, <a href="/A291688/b291688.txt">Table of n, a(n) for n = 0..250</a>

%F a(n) = A291684(2n,n).

%e a(2) = 5: 2134, 2314, 2341, 2413, 2431.

%p b:= proc(u, o, t) option remember; `if`(u+o=0, 1,

%p add(b(u-j, o+j-1, j), j=1..min(t, u))+

%p add(b(u+j-1, o-j, j), j=1..min(t, o)))

%p end:

%p a:= n-> b(0, 2*n, n)-`if`(n=0, 0, b(0, 2*n, n-1)):

%p seq(a(n), n=0..25);

%t b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1,

%t Sum[b[u - j, o + j - 1, j], {j, Min[t, u]}] +

%t Sum[b[u + j - 1, o - j, j], {j, Min[t, o]}]];

%t a[n_] := b[0, 2n, n] - If[n == 0, 0, b[0, 2n, n - 1]];

%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Aug 30 2021, after _Alois P. Heinz_ *)

%Y Cf. A291684.

%Y Bisection (even part) of A303204.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Aug 29 2017