login
a(n) = [x^n] (1/(1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + x^5/(1 + ...)))))))^n, a continued fraction.
6

%I #7 Aug 29 2017 16:00:42

%S 1,-1,3,-7,15,-26,15,153,-1049,4790,-18522,64481,-206181,606384,

%T -1615121,3715993,-6289929,550850,61250694,-382787092,1726745790,

%U -6691501530,23413714107,-75179994017,221304346963,-586004040651,1318720868416,-2044320913276,-1137686341077,28530838758784,-165361803129585

%N a(n) = [x^n] (1/(1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + x^5/(1 + ...)))))))^n, a continued fraction.

%H Seiichi Manyama, <a href="/A291651/b291651.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Rogers-RamanujanContinuedFraction.html">Rogers-Ramanujan Continued Fraction</a>

%F a(n) = A286509(n,n).

%t Table[SeriesCoefficient[1/(1 + ContinuedFractionK[x^i, 1, {i, 1, n}])^n, {x, 0, n}], {n, 0, 30}]

%Y Main diagonal of A286509.

%Y Cf. A291335.

%K sign

%O 0,3

%A _Ilya Gutkovskiy_, Aug 28 2017