login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Carmichael numbers k such that 2^d == 2^(k/d) (mod k) for all d|k.
1

%I #23 Apr 22 2024 08:12:22

%S 1105,294409,852841,3828001,17098369,118901521,150846961,172947529,

%T 186393481,200753281,686059921,771043201,1001152801,1207252621,

%U 1269295201,1299963601,1632785701,1772267281,2301745249,4215885697,4562359201,4765950001,4897161361

%N Carmichael numbers k such that 2^d == 2^(k/d) (mod k) for all d|k.

%C Intersection of A002997 and A291601.

%H Amiram Eldar, <a href="/A291616/b291616.txt">Table of n, a(n) for n = 1..10000</a> (calculated using data from Claude Goutier; terms 1..3648 from Max Alekseyev)

%H Claude Goutier, <a href="http://www-labs.iro.umontreal.ca/~goutier/OEIS/A055553/">Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22</a>.

%H <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers</a>.

%e Carmichael number 294409 = 37*73*109 is a term because 2^37 == 2^(73*109) (mod 294409), 2^73 == 2^(37*109) (mod 294409), 2^109 == 2^(37*73) (mod 294409).

%Y Cf. A002997, A291601, A291612.

%K nonn

%O 1,1

%A _Max Alekseyev_, _Thomas Ordowski_, _Altug Alkan_, Aug 28 2017