login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The arithmetic function uhat(n,5,5).
0

%I #4 Aug 27 2017 08:49:10

%S 1,1,1,1,-3,1,1,1,1,-3,1,1,1,1,-3,1,1,1,1,-3,1,1,1,1,-3,1,1,1,1,-3,1,

%T 1,1,1,-3,1,1,1,1,-3,1,1,1,1,-3,1,1,1,1,-3,1,1,1,1,-3,1,1,1,1,-3,1,1,

%U 1,1,-3,1,1,1,1,-3

%N The arithmetic function uhat(n,5,5).

%H Bela Bajnok, <a href="https://arxiv.org/abs/1705.07444">Additive Combinatorics: A Menu of Research Problems</a>, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.4.

%t delta[r_, k_, d_] := If[r < k, (k - r)*r - (d - 1), If[k < r && r < d, (d - r)*(r - k) - (d - 1), If[k == r && r == d, d - 1, 0]]] uhat[n_, m_, h_] := (dx = Divisors[n]; dmin = n; For[i = 1, i ≤ Length[dx], i++, d = dx[[i]]; k = m - d*Ceiling[m/d] + d; r = h - d*Ceiling[h/d] + d; If[h ≤ Min[k, d - 1], dmin = Min[dmin, n, (h*Ceiling[m/d] - h + 1)*d, h*m - h*h + 1], dmin = Min[dmin, n, h*m - h*h + 1 - delta[r, k, d]]]]; dmin) Table[uhat[n, 5,5], {n, 1, 70}]

%Y Cf. A289435, A289436, A289437, A289438, A289439, A289440, A289441.

%K sign

%O 1,5

%A _Robert Price_, Aug 26 2017