login
Central terms of triangle A291560: a(n) = A291560(2*n-1,n) for n>=1.
2

%I #5 Sep 08 2017 18:44:05

%S 1,-10,8694,-61647300,1734021238950,-136052492985945900,

%T 24163008287867047021500,-8459330090805576230333085000,

%U 5291501479813583484914737466943750,-5495231184920767021604909502973944937500,8949980571079076055152283884403171536694652500,-21844650683271846600479522545258218405196394185875000,76989791585920262367039920605319026539360791969735659537500

%N Central terms of triangle A291560: a(n) = A291560(2*n-1,n) for n>=1.

%C The e.g.f. G(x,k) of triangle A291560 satisfies: sin(G(x,k)) = k * sin(x).

%o (PARI) {A291560(n, r) = (2*n-1)! * polcoeff( polcoeff( asin( k*sin(x + O(x^(2*n)))), 2*n-1, x), 2*r-1, k)}

%o for(n=1, 15, print1(A291560(2*n-1, n), ", "))

%K sign

%O 1,2

%A _Paul D. Hanna_, Sep 08 2017