OFFSET
0,2
COMMENTS
Partial sums of A001970.
FORMULA
G.f.: (1/(1 - x))*Product_{k>=1} 1/(1 - x^k)^p(k), where p(k) = [x^k] Product_{k>=1} 1/(1 - x^k).
EXAMPLE
Equivalently (Cayley), a(n) = total number of 2-dimensional partitions of all nonnegative integers <= n.
a(3) = 11 because we have:
0...1...2.11.1...3.21.2.111.11.1
.............1........1.....1..1
...............................1
and 1 + 1 + 3 + 6 = 11.
MAPLE
with(numtheory): with(combinat):
b:= proc(n) option remember; `if`(n=0, 1, add(add(d*
numbpart(d), d=divisors(j))*b(n-j), j=1..n)/n)
end:
a:= proc(n) option remember; b(n)+`if`(n>0, a(n-1), 0) end:
seq(a(n), n=0..40); # Alois P. Heinz, Sep 11 2017
MATHEMATICA
nmax = 36; CoefficientList[Series[1/(1 - x) Product[1/(1 - x^k)^PartitionsP[k], {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 30 2017
STATUS
approved