OFFSET
1,2
COMMENTS
Also the number of non-isomorphic one-face one-vertex maps on a genus g surface where both orientation-preserving and orientation-reversing isomorphisms are taken into account.
LINKS
Evgeniy Krasko, Counting Unlabelled Chord Diagrams of Maximal Genus, arXiv:1709.00796 [math.CO], 2017.
Evgeny Krasko, A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv preprint arXiv:1601.05073 [math.CO], 2016; Electronic Journal of Combinatorics 24(3) (2017), #P3.43
PROG
(Python 2.7)
rot_sym = [
0, 1, 4, 131, 14118, 2976853, 1013582110, 508233789579, 352755124921122,
324039613564554401, 380751174738424280720, 557175918657122229139987,
993806827312044893602464496, # A291172
]
def u(n):
if n < 0:
return 0
if n <= 1:
return 1
sum = 0
sum -= (4 * n - 1) * u(n - 1)
sum += n * (2 * n - 3) * (10 * n - 9) * u(n - 2)
sum += 5 * (2 * n - 3) * (2 * n - 4) * (2 * n - 5) * u(n - 3)
sum -= 2 * (2 * n - 3) * (2 * n - 4) * (2 * n - 5) * (2 * n - 6) * (2 * n - 7) * u(n - 4)
return sum / (n + 1)
for i in range(1, 13):
print (2 * rot_sym[i] + u(i) + u(i - 1) * (2 * i - 1)) / 4
CROSSREFS
KEYWORD
nonn
AUTHOR
Evgeniy Krasko, Sep 03 2017
STATUS
approved