login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291371
Number of maximal chord diagrams of genus g counted up to rotations and reflections.
2
1, 4, 82, 7258, 1491629, 506855279, 254118439668, 176377605783906, 162019808170348933, 190375587419231088550, 278587959330563466969926, 496903413656110608290219603
OFFSET
1,2
COMMENTS
Also the number of non-isomorphic one-face one-vertex maps on a genus g surface where both orientation-preserving and orientation-reversing isomorphisms are taken into account.
LINKS
Evgeniy Krasko, Counting Unlabelled Chord Diagrams of Maximal Genus, arXiv:1709.00796 [math.CO], 2017.
Evgeny Krasko, A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv preprint arXiv:1601.05073 [math.CO], 2016; Electronic Journal of Combinatorics 24(3) (2017), #P3.43
PROG
(Python 2.7)
rot_sym = [
0, 1, 4, 131, 14118, 2976853, 1013582110, 508233789579, 352755124921122,
324039613564554401, 380751174738424280720, 557175918657122229139987,
993806827312044893602464496, # A291172
]
def u(n):
if n < 0:
return 0
if n <= 1:
return 1
sum = 0
sum -= (4 * n - 1) * u(n - 1)
sum += n * (2 * n - 3) * (10 * n - 9) * u(n - 2)
sum += 5 * (2 * n - 3) * (2 * n - 4) * (2 * n - 5) * u(n - 3)
sum -= 2 * (2 * n - 3) * (2 * n - 4) * (2 * n - 5) * (2 * n - 6) * (2 * n - 7) * u(n - 4)
return sum / (n + 1)
for i in range(1, 13):
print (2 * rot_sym[i] + u(i) + u(i - 1) * (2 * i - 1)) / 4
CROSSREFS
Maximal diagrams up to rotations: A291172.
Sequence in context: A289224 A158981 A317889 * A007154 A056410 A056400
KEYWORD
nonn
AUTHOR
Evgeniy Krasko, Sep 03 2017
STATUS
approved