Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Oct 01 2018 21:09:34
%S 9,2,3,2,5,2,7,2,3,2,9,2,9,2,3,2,9,2,9,2,3,2,9,2,5,2,3,2,9,2,9,2,3,2,
%T 5,2,9,2,3,2,9,2,9,2,3,2,9,2,7,2,3,2,9,2,5,2,3,2,9,2,9,2,3,2,5,2,9,2,
%U 3,2,9,2,9,2,3,2,7,2,9,2,3,2,9,2,5,2,3,2,9,2,7,2,3,2,5,2,9,2,3,2,9,2,9,2,3
%N The arithmetic function u(n,2,8).
%H Antti Karttunen, <a href="/A291363/b291363.txt">Table of n, a(n) for n = 1..65537</a>
%H Bela Bajnok, <a href="https://arxiv.org/abs/1705.07444">Additive Combinatorics: A Menu of Research Problems</a>, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.3.
%t u[n_, m_, h_] := (d = Divisors[n]; Min[(h*Ceiling[m/d] - h + 1)*d]); Table[u[n, 2, 8], {n, 1, 70}]
%o (PARI) A291363(n, m=2, h=8) = { my(p=0,k); fordiv(n,d,k = d*(h*ceil(m/d) - h + 1); if(!p || (k < p), p = k)); (p); }; \\ _Antti Karttunen_, Oct 01 2018
%Y Cf. A289435, A289436, A289437, A289438, A289439, A289440, A289441.
%K nonn
%O 1,1
%A _Robert Price_, Aug 23 2017
%E More terms from _Antti Karttunen_, Oct 01 2018