login
A291343
Numbers k such that k!4 + 2^3 is prime, where k!4 = k!!!! is the quadruple factorial number (A007662).
1
3, 5, 7, 9, 11, 13, 19, 23, 25, 33, 39, 41, 63, 67, 71, 85, 87, 91, 133, 171, 243, 291, 1239, 1543, 1879, 2169, 2421, 3149, 3323, 3377, 3501, 3529, 5433, 5599, 7299, 11227, 11275, 13939, 27147, 32435, 86455, 92105
OFFSET
1,1
COMMENTS
Corresponding primes are: 11, 13, 29, 53, 239, 593, 65843, 1514213, 5221133, ...
a(43) > 10^5.
Terms > 33 correspond to probable primes.
EXAMPLE
13!4 + 2^3 = 13*9*5*1 + 8 = 593 is prime, so 13 is in the sequence.
MATHEMATICA
MultiFactorial[n_, k_] := If[n < 1, 1, n*MultiFactorial[n - k, k]];
Select[Range[0, 50000], PrimeQ[MultiFactorial[#, 4] + 2^3] &]
Select[Range[100000], PrimeQ[Times@@Range[#, 1, -4]+8]&] (* Harvey P. Dale, Oct 29 2022 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Robert Price, Aug 22 2017
EXTENSIONS
a(41)-a(42) from Robert Price, Sep 25 2019
STATUS
approved