login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291269
Numbers that contain exactly 2 pairs of identical digits.
1
1001, 1010, 1100, 1122, 1133, 1144, 1155, 1166, 1177, 1188, 1199, 1212, 1221, 1313, 1331, 1414, 1441, 1515, 1551, 1616, 1661, 1717, 1771, 1818, 1881, 1919, 1991, 2002, 2020, 2112, 2121, 2200, 2211, 2233, 2244, 2255, 2266, 2277, 2288, 2299, 2323, 2332, 2424, 2442
OFFSET
1,1
COMMENTS
Since other digits may be present, the last term is 998876543210; otherwise the last term would be 9988.
No multiples above 2 of identical digits are allowed, e.g., 1122333 is not a member of the sequence. - Harvey P. Dale, Nov 07 2021
LINKS
MATHEMATICA
Select[Range[10^3, 10^4 - 1], Union@ Map[Length, #] == {2} &@ Split@ Sort@ IntegerDigits@ # &] (* Michael De Vlieger, Aug 24 2017 *)
(* program above only works for numbers of 4 digits, or *)
ok[n_] := Block[{d = DigitCount[n]}, Count[d, 2] == 2 && {} == Select[d, # > 2 &]]; Select[Range[11000], ok] (* Giovanni Resta, Aug 25 2017 *)
tpidQ[n_]:=Module[{dc=DigitCount[n]}, Max[dc]==2&&Count[dc, 2]==2]; Select[ Range[2500], tpidQ] (* Harvey P. Dale, Nov 07 2021 *)
CROSSREFS
Sequence in context: A282985 A262859 A044881 * A317291 A362921 A241946
KEYWORD
nonn,base,fini
AUTHOR
Enrique Navarrete, Aug 21 2017
STATUS
approved