%I #12 Oct 24 2017 02:29:54
%S 4,1,6,78,102,130,66,30,510,1218,4002,4578,390,14326,14430,858,690,
%T 330,1722,5106,11310,1110,13090,3666,46662,10230,44574,210,9570,4290,
%U 32010,29946,30498,13398,9282,15810,11730,25194,12090,36890,103730,194370,239190,86430,79230,6006,359310,85470,2730,211470
%N a(n) = k if the first appearance of n in A077618 is at index k, or 0 if k does not appear in A077618.
%C Conjecture: all positive integers appear in A077618, so a(n) is never 0.
%H Robert Israel, <a href="/A291056/b291056.txt">Table of n, a(n) for n = 0..168</a>
%e a(3) = 78 because A077618(78)=3 and this is the first appearance of 3 in A077618.
%p N:= 10^6: # to get all terms before the first where a(n) > N
%p M:= map(numtheory:-bigomega, [$1..N]):
%p S:= map(numtheory:-issqrfree, [$1..N]):
%p f:= proc(n) local m,k,t;
%p if not S[n] then return 0 fi;
%p m:= M[n];
%p t:= 1;
%p for k from n-1 to 1 by -1 do
%p if M[k] = m then
%p if S[k] then return t
%p else t:= t+1
%p fi;
%p fi
%p od;
%p t
%p end proc;
%p R:= map(f, [$1..N]):
%p A:= NULL:
%p for i from 0 do
%p j:= ListTools:-Search(i,R);
%p if j = 0 then break fi;
%p A:= A,j
%p od:
%p A;
%K nonn
%O 0,1
%A _Robert Israel_, Oct 20 2017