login
A291052
Primes p such that the sum of the cubes of digits of p equals the sum of digits of p^3.
0
2, 31, 103, 1321, 2003, 3001, 3221, 10303, 21323, 23021, 30203, 30313, 31123, 31223, 31321, 32003, 33013, 33211, 100003, 102241, 103231, 113023, 122033, 122321, 130223, 131203, 132001, 132103, 133201, 133213, 200003, 203311, 210233, 213203, 220411, 221303, 223211
OFFSET
1,1
EXAMPLE
a(2)=31 is prime: [3^3 + 1^3 = 27 + 1] = 28; [31^3 = 29791, 2+9+7+9+1] = 28.
a(4)=1321 is prime: [1^3 + 3^3 + 2^3 + 1^3 = 1 + 27 + 8 + 1] = 37; [31^3 = 2305199161, 2+3+0+5+1+9+9+1+6+1] = 37.
MATHEMATICA
Select[Prime[Range[30000]], Total[IntegerDigits[#]^3] == Plus @@ IntegerDigits[#^3] &]
PROG
(PARI) forprime(p=1, 30000, d=digits(p); if(sum(i=1, length(d), d[i]^3) == sumdigits(p^3), print1(p", ")));
CROSSREFS
Intersection of A000040 and A165551.
Sequence in context: A336788 A107170 A273403 * A267888 A229014 A042059
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, Aug 17 2017
STATUS
approved