login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A291052 Primes p such that the sum of the cubes of digits of p equals the sum of digits of p^3. 0
2, 31, 103, 1321, 2003, 3001, 3221, 10303, 21323, 23021, 30203, 30313, 31123, 31223, 31321, 32003, 33013, 33211, 100003, 102241, 103231, 113023, 122033, 122321, 130223, 131203, 132001, 132103, 133201, 133213, 200003, 203311, 210233, 213203, 220411, 221303, 223211 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
EXAMPLE
a(2)=31 is prime: [3^3 + 1^3 = 27 + 1] = 28; [31^3 = 29791, 2+9+7+9+1] = 28.
a(4)=1321 is prime: [1^3 + 3^3 + 2^3 + 1^3 = 1 + 27 + 8 + 1] = 37; [31^3 = 2305199161, 2+3+0+5+1+9+9+1+6+1] = 37.
MATHEMATICA
Select[Prime[Range[30000]], Total[IntegerDigits[#]^3] == Plus @@ IntegerDigits[#^3] &]
PROG
(PARI) forprime(p=1, 30000, d=digits(p); if(sum(i=1, length(d), d[i]^3) == sumdigits(p^3), print1(p", ")));
CROSSREFS
Intersection of A000040 and A165551.
Sequence in context: A336788 A107170 A273403 * A267888 A229014 A042059
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, Aug 17 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 14:31 EDT 2024. Contains 373651 sequences. (Running on oeis4.)