Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Sep 28 2017 13:56:23
%S 1,3,8,23,66,188,537,1533,4376,12493,35664,101812,290649,829731,
%T 2368680,6762003,19303866,55107824,157319377,449108397,1282094784,
%U 3660067465,10448598672,29828197224,85152217777,243088784019,693959105912,1981083753503,5655510252642
%N a(n) = (1/2)*A291036(n).
%H Clark Kimberling, <a href="/A291037/b291037.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2, 2, 2, -2, 0, -1)
%F G.f.: -((-1 - x + x^3)/(1 - 2 x - 2 x^2 - 2 x^3 + 2 x^4 + x^6)).
%F a(n) = 2*a(n-1) + 2*a(n-2) + 2*a(n-3) - 2*a(n-4) - a(n-6) for n >= 7.
%t z = 60; s = x/(x - x^3); p = 1 - 2 s - 2 s^2;
%t Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A079978 *)
%t u = Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291036 *)
%t u/2 (* A291037 *)
%t LinearRecurrence[{2,2,2,-2,0,-1},{1,3,8,23,66,188},30] (* _Harvey P. Dale_, Sep 24 2017 *)
%Y Cf. A079978, A290616, A291036.
%K nonn,easy
%O 0,2
%A _Clark Kimberling_, Sep 14 2017