login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 8*S^2.
2

%I #16 Jul 15 2024 06:04:55

%S 0,8,16,88,288,1192,4400,17144,65088,250184,955984,3663256,14018400,

%T 53679592,205487984,786733112,3011882112,11530896008,44144966800,

%U 169006205656,647027178912,2477097797416,9483385847216,36306456276344,138996613483200,532138420900808

%N p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 8*S^2.

%C Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).

%C See A291000 for a guide to related sequences.

%H Clark Kimberling, <a href="/A291001/b291001.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,7).

%F G.f.: 8*x/(1 - 2*x - 7*x^2).

%F a(n) = 2*a(n-1) + 7*a(n-2) for n >= 3.

%F a(n) = 8*A015519(n).

%F a(n) = sqrt(2)*((1+2*sqrt(2))^n - (1-2*sqrt(2))^n). - _Colin Barker_, Aug 23 2017

%t z = 60; s = x/(1 - x); p = 1 - s^8;

%t Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)

%t Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291001 *)

%t LinearRecurrence[{2,7}, {0,8}, 41] (* _G. C. Greubel_, Apr 25 2023 *)

%o (Magma) [n le 2 select 8*(n-1) else 2*Self(n-1) +7*Self(n-2): n in [1..41]]; // _G. C. Greubel_, Apr 25 2023

%o (SageMath)

%o A291001=BinaryRecurrenceSequence(2,7,0,8)

%o [A291001(n) for n in range(41)] # _G. C. Greubel_, Apr 25 2023

%Y Cf. A000012, A015519, A033453, A289780, A291000.

%K nonn,easy

%O 0,2

%A _Clark Kimberling_, Aug 22 2017