login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The arithmetic function v_2(n,6).
0

%I #8 Aug 21 2017 13:00:22

%S 0,1,1,1,2,1,2,3,2,2,4,2,2,5,4,3,6,3,5,7,4,4,8,5,4,9,7,5,10,5,8,11,6,

%T 7,12,6,6,13,10,7,14,7,11,15,8,8,16,8,10,17,13,9,18,11,14,19,10,10,20,

%U 10,10,21,16,13,22,11,17,23,14,12,24,12,12,25,19,14,26

%N The arithmetic function v_2(n,6).

%D J. Butterworth, Examining the arithmetic function v_g(n,h). Research Papers in Mathematics, B. Bajnok, ed., Gettysburg College, Vol. 8 (2008).

%H Bela Bajnok, <a href="https://arxiv.org/abs/1705.07444">Additive Combinatorics: A Menu of Research Problems</a>, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.1.

%t v[g_, n_, h_] := (d = Divisors[n]; Max[(Floor[(d - 1 - GCD[d, g])/h] + 1)*n/d]); Table[v[2, n, 6], {n, 2, 70}]

%t a[n_]:=n Max[Table[(Floor[(d - 1 - GCD[d, 2])/6] + 1)/d, {d, Divisors[n]}]]; Table[a[n], {n, 2, 100}] (* _Vincenzo Librandi_, Aug 19 2017 *)

%Y Cf. A289435, A289436, A289437, A289438, A289439, A289440, A289441.

%K nonn

%O 2,5

%A _Robert Price_, Aug 16 2017