Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Aug 28 2017 07:35:25
%S 1,2,2,6,40,208,798,3122,15038,77830,381798,1819998,8925172,45280900,
%T 231030138,1171823534,5962836408,30668699312,158951012362,
%U 825830001086,4298605879552,22459588992656,117842770179898,620193719988230,3271151667546526,17291851589803030,91629268113394082,486633483668452306,2589396122840425628,13802082307489152876,73692343820697785462,394098991084750746722
%N G.f. A(x) satisfies: A( 2*A(x)^2 - 4*A(x)^3 ) = 2*x^2 + 4*x^3.
%C Series reversion of the g.f. is described by A290958.
%H Paul D. Hanna, <a href="/A290957/b290957.txt">Table of n, a(n) for n = 1..520</a>
%F a(n) ~ c * d^n / n^(3/2), where d = 5.6107024438745823... and c = 0.07583382126393587... - _Vaclav Kotesovec_, Aug 28 2017
%e G.f.: A(x) = x + 2*x^2 + 2*x^3 + 6*x^4 + 40*x^5 + 208*x^6 + 798*x^7 + 3122*x^8 + 15038*x^9 + 77830*x^10 + 381798*x^11 + 1819998*x^12 + 8925172*x^13 + 45280900*x^14 + 231030138*x^15 + 1171823534*x^16 + 5962836408*x^17 + 30668699312*x^18 + 158951012362*x^19 + 825830001086*x^20 +...
%e such that A( 2*A(x)^2 - 4*A(x)^3 ) = 2*x^2 + 4*x^3.
%e Let B(x) be the series reversion of A(x), then B(x) is the g.f. of A290958 and begins;
%e B(x) = x - 2*x^2 + 6*x^3 - 26*x^4 + 100*x^5 - 460*x^6 + 2258*x^7 - 11558*x^8 + 60786*x^9 - 326826*x^10 + 1785930*x^11 - 9893778*x^12 + 55447800*x^13 - 313817720*x^14 + 1791442406*x^15 - 10303155322*x^16 +...+ A290958(n)*x^n +...
%e where B( 2*x^2 + 4*x^3 ) = 2*A(x)^2 - 4*A(x)^3,
%e also, A( 2*x^2 - 4*x^3 ) = 2*B(x)^2 + 4*B(x)^3,
%e and B( 2*B(x)^2 + 4*B(x)^3 ) = 2*x^2 - 4*x^3.
%e Related series begin:
%e 2*A(x)^2 - 4*A(x)^3 = 2*x^2 - 12*x^3 + 56*x^4 - 272*x^5 + 1312*x^6 - 6432*x^7 + 32640*x^8 - 170576*x^9 + 911696*x^10 - 4963760*x^11 + 27425200*x^12 +...
%e 2*B(x)^2 + 4*B(x)^3 = 2*x^2 + 12*x^3 + 40*x^4 + 112*x^5 + 416*x^6 + 2112*x^7 + 10336*x^8 + 45936*x^9 + 206192*x^10 + 999376*x^11 + 5026640*x^12 +...
%o (PARI) /* Informal code to generate N terms */
%o {C=[1,2]; for(i=1,N=60,
%o A = sum(n=1,#C,C[n]*x^(n) ) + t*x^(#C+1) +O(x^(#C+2));
%o S = subst(A,x, 2*A^2 - 4*A^3);
%o C = concat(C,polcoeff(subst(-S/deriv(polcoeff(S,#C+2,x),t),t,0),#C+2,x) )); C}
%Y Cf. A290958 (inverse), A271961.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Aug 14 2017