login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to write n as an ordered sum of 3 generalized pentagonal numbers (A001318).
1

%I #21 Jan 07 2025 10:08:11

%S 1,3,6,7,6,6,7,12,12,12,9,6,12,12,18,13,12,18,12,18,12,13,18,12,24,12,

%T 12,24,21,30,12,18,18,12,24,18,19,18,24,24,18,24,36,24,18,19,18,24,24,

%U 30,18,12,36,30,24,21,18,36,24,36,24,12,36,36,36,18,25,30,24,24,24,30,24,36,30,24

%N Number of ways to write n as an ordered sum of 3 generalized pentagonal numbers (A001318).

%C Conjecture: every number is the sum of at most k - 4 generalized k-gonal numbers (for k >= 8).

%C In 1830, Legendre showed that for each integer m>4 every integer N >= 28*(m-2)^3 can be written as the sum of five m-gonal numbers. In 1994 R. K. Guy proved that each natural number is the sum of three generalized pentagonal numbers. In a 2016 paper Zhi-Wei Sun proved that each natural number is the sum of four octagonal numbers. - _Zhi-Wei Sun_, Oct 03, 2020

%H Robert Israel, <a href="/A290943/b290943.txt">Table of n, a(n) for n = 0..10000</a>

%H Ilya Gutkovskiy, <a href="/A290943/a290943.pdf">Extended graphical example</a>

%H Zhi-Wei Sun, <a href="http://dx.doi.org/10.1016/j.jnt.2015.10.014">A result similar to Lagrange's theorem</a>, J. Number Theory 162(2016), 190-211.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PentagonalNumber.html">Pentagonal Number</a>

%H <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a>

%F G.f.: (Sum_{k=-infinity..infinity} x^(k*(3*k-1)/2))^3.

%F G.f.: (Sum_{k>=0} x^A001318(k))^3.

%F G.f.: Product_{n >= 1} ( (1 - q^(3*n))/(1 - q^n + q^(2*n)) )^3. - _Peter Bala_, Jan 04 2025

%e a(6) = 7 because we have [5, 1, 0], [5, 0, 1], [2, 2, 2], [1, 5, 0], [1, 0, 5], [0, 5, 1] and [0, 1, 5].

%p N:= 100;

%p bds:= [fsolve(k*(3*k-1)/2 = N)];

%p G:= add(x^(k*(3*k-1)/2),k=floor(min(bds))..ceil(max(bds)))^3:

%p seq(coeff(G,x,n),n=0..N); # _Robert Israel_, Aug 16 2017

%t nmax = 75; CoefficientList[Series[Sum[x^(k (3 k - 1)/2), {k, -nmax, nmax}]^3, {x, 0, nmax}], x]

%t nmax = 75; CoefficientList[Series[Sum[x^((6 k^2 + 6 k + (-1)^(k + 1) (2 k + 1) + 1)/16), {k, 0, nmax}]^3, {x, 0, nmax}], x]

%t nmax = 75; CoefficientList[Series[EllipticTheta[4, 0, x^3]^3/QPochhammer[x, x^2]^3, {x, 0, nmax}], x]

%Y Cf. A001318, A002175, A008443, A080995, A093518, A093519, A255350, A255934, A256132, A256171, A280718.

%K nonn,easy,changed

%O 0,2

%A _Ilya Gutkovskiy_, Aug 14 2017