login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290806
One of the two successive approximations up to 7^n for the 7-adic integer sqrt(-5). These are the numbers congruent to 3 mod 7 (except for the initial 0).
10
0, 3, 17, 311, 997, 3398, 20205, 608450, 2255536, 25314740, 25314740, 307789989, 8217096961, 77423532966, 368090564187, 4437429001281, 4437429001281, 4437429001281, 4437429001281, 3261264624822179, 3261264624822179, 3261264624822179, 1120352992791390193
OFFSET
0,2
COMMENTS
x = ...112623,
x^2 = ...666662 = -5.
LINKS
FORMULA
a(0) = 0 and a(1) = 3, a(n) = a(n-1) + (a(n-1)^2 + 5) mod 7^n for n > 1.
EXAMPLE
a(1) = 3_7 = 3,
a(2) = 23_7 = 17,
a(3) = 623_7 = 311,
a(4) = 2623_7 = 997.
MAPLE
with(padic):
R:= [rootp(x^2+5, 7, 100)]:
R1:= op(select(t -> ratvaluep(evalp(t, 7, 1))=3, R)):
seq(ratvaluep(evalp(R1, 7, n)), n=0..100); # Robert Israel, Aug 13 2017
PROG
(PARI) a(n) = if (n, truncate(sqrt(-5+O(7^(n)))), 0)
CROSSREFS
Sequence in context: A155201 A062622 A271609 * A009592 A051294 A192556
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 11 2017
STATUS
approved