login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290786
a(n) = n-th Carlitz-Riordan q-Catalan number (recurrence version) for q = -n.
3
1, 1, -1, -23, 3429, 8425506, -412878084725, -497641562809372379, 17436260499054618815283977, 20503694883570579788445502041773422, -917439693541287252616828116888122637934368489, -1746281566732870051764961051797990328294109372786185933382
OFFSET
0,4
LINKS
J. Fürlinger and J. Hofbauer, q-Catalan numbers, Journal of Combinatorial Theory, Series A, Volume 40, Issue 2, November 1985, Pages 248-264.
Robin Sulzgruber, The Symmetry of the q,t-Catalan Numbers, Masterarbeit, University of Vienna. Fakultät für Mathematik, 2013.
FORMULA
a(n) = [x^n] 1/(1-x/(1+n*x/(1-n^2*x/(1+n^3*x/(1-n^4*x/(1+ ... )))))).
a(n) = A290789(n,n).
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, add(
b(j, k)*b(n-j-1, k)*(-k)^j, j=0..n-1))
end:
a:= n-> b(n$2):
seq(a(n), n=0..12);
MATHEMATICA
b[n_, k_]:=b[n, k]=If[n==0, 1, Sum[b[j, k] b[n - j - 1, k] (-k)^j, {j, 0, n - 1}]]; Table[b[n, n], {n, 0, 15}] (* Indranil Ghosh, Aug 10 2017 *)
PROG
(Python)
from sympy.core.cache import cacheit
@cacheit
def b(n, k): return 1 if n==0 else sum([b(j, k)*b(n - j - 1, k)*(-k)**j for j in range(n)])
def a(n): return b(n, n)
print([a(n) for n in range(16)]) # Indranil Ghosh, Aug 10 2017
CROSSREFS
Main diagonal of A290789.
Cf. A290777.
Sequence in context: A267692 A136363 A340330 * A248335 A222031 A233143
KEYWORD
sign
AUTHOR
Alois P. Heinz, Aug 10 2017
STATUS
approved