Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jun 15 2019 10:31:56
%S 1,1,1,1,2,1,1,2,3,1,1,2,1,2,1,1,2,3,1,5,1,1,2,1,2,1,1,1,1,2,3,1,1,1,
%T 7,1,1,2,1,2,1,1,1,1,1,1,2,3,1,5,1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,1,2,
%U 3,1,1,1,1,1,1,1,11,1,1,2,1,2,1,1,1,1,1,1,1,1
%N Triangle read by rows, denominators of coefficients (in rising powers) of rational polynomials P(n, x) such that Integral_{x=0..1} P'(n, x) = Bernoulli(n, 1).
%C See A290694 for comments.
%F T(n, k) = Denominator([x^k] Integral (Sum_{j=0..n} (-1)^(n-j)*Stirling2(n,j)*j!* x^j)^m) for m = 1 and k = 0..n+1.
%e Triangle starts:
%e [1, 1]
%e [1, 1, 2]
%e [1, 1, 2, 3]
%e [1, 1, 2, 1, 2]
%e [1, 1, 2, 3, 1, 5]
%e [1, 1, 2, 1, 2, 1, 1]
%e [1, 1, 2, 3, 1, 1, 1, 7]
%e [1, 1, 2, 1, 2, 1, 1, 1, 1]
%p T_row := n -> denom(PolynomialTools:-CoefficientList(add((-1)^(n-j+1)*Stirling2(n, j-1)*(j-1)!*x^j/j, j=1..n+1), x)): for n from 0 to 7 do T_row(n) od;
%t T[n_] := Denominator[CoefficientList[Sum[(-1)^(n-j+1) StirlingS2[n, j-1] (j-1)! x^j/j, {j, 1, n+1}], x]];
%t Table[T[n], {n, 0, 7}] (* _Jean-François Alcover_, Jun 15 2019, from Maple *)
%Y Cf. A164555/A027642, A212196/A181131, A291449/A291450, A290694/A290695, A291447/A291448.
%K nonn,tabf,frac
%O 0,5
%A _Peter Luschny_, Aug 24 2017