login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Carmichael numbers of the form p - 2 where p is a prime number.
2

%I #42 Apr 22 2024 13:48:18

%S 561,2465,656601,1909001,174352641,230996949,275283401,939947009,

%T 1534274841,3264820001,5860426881,6025532241,25536531021,36709177121,

%U 53388707681,54519328481,56222911361,101536702401,105528976961,180481509681,196866607601,239862350001,329245587161,347469383801,347511324161

%N Carmichael numbers of the form p - 2 where p is a prime number.

%C Rotkiewicz mentioned the first six terms of this sequence at the end of page 59 of his article (Links section). But his list includes 2821 and 46657 (2823 = 3 * 941 and 46659 = 3 * 103 * 151), which should not be there.

%C Carmichael numbers of the form p + 2 where p is a prime number are 1105, 2821, 6601, 29341, 41041, 52633, ... (see also A272754 for corresponding prime numbers).

%H Amiram Eldar, <a href="/A290692/b290692.txt">Table of n, a(n) for n = 1..5901</a> (terms below 10^22 calculated using data from Claude Goutier; terms 1..591 from Robert Israel)

%H Claude Goutier, <a href="http://www-labs.iro.umontreal.ca/~goutier/OEIS/A055553/">Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22</a>.

%H R. G. E. Pinch, Carmichael numbers up to <a href="http://s369624816.websitehome.co.uk/rgep/carmichael-16.gz">10^16</a>, <a href="http://s369624816.websitehome.co.uk/rgep/carmichael17.gz">10^16 to 10^17</a>, <a href="http://s369624816.websitehome.co.uk/rgep/carmichael18.gz">10^17 to 10^18</a>

%H Andrzej Rotkiewicz, <a href="http://dml.cz/dmlcz/137472">On pseudoprimes having special forms and a solution of K. Szymiczek's problem</a>, Acta Mathematica Universitatis Ostraviensis, Vol. 13, No. 1 (2005), pp. 57-71.

%H <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers</a>.

%p # Using data file from Richard Pinch

%p infile:= "carmichael-16": Res:= NULL;

%p do

%p S:= readline(infile);

%p if S = 0 then break fi;

%p L:= sscanf(S,"%d");

%p if nops(L) <> 1 then break fi;

%p if isprime(L[1]+2) then Res:= Res, L[1]; fi

%p od:

%p Res; # _Robert Israel_, Jun 03 2019

%t Cases[Range[1, 10^7, 2], n_ /; And[Mod[n, CarmichaelLambda@ n] == 1, ! PrimeQ@ n, PrimeQ[n + 2]]] (* _Michael De Vlieger_, Aug 09 2017, after _Artur Jasinski_ at A002997 *)

%o (PARI) isA002997(n) = {my(f); bittest(n, 0) && !for(i=1, #f=factor(n)~, (f[2, i]==1 && n%(f[1, i]-1)==1)||return) && #f>1}

%o isok(n) = isprime(n+2) && isA002997(n)

%Y Cf. A002997, A272754, A287591.

%K nonn

%O 1,1

%A _Altug Alkan_, Aug 09 2017

%E More terms from _Robert Israel_, Jun 03 2019