Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Aug 16 2017 23:43:58
%S 1,0,2,1,3,2,4,2,5,3,6,3,7,3,8,4,9,5,10,6,11,6,12,6,13,6,14,7,15,8,16,
%T 9,17,10,18,9,19,9,20,10,21,11,22,11,23,12,24,14,25,12,26,13,27,15,28,
%U 15,29,15,30,15,31,18,32,16,33,17,34,18,35
%N The arithmetic function v_3(n,4).
%D J. Butterworth, Examining the arithmetic function v_g(n,h). Research Papers in Mathematics, B. Bajnok, ed., Gettysburg College, Vol. 8 (2008).
%H Robert Israel, <a href="/A290636/b290636.txt">Table of n, a(n) for n = 2..10000</a>
%H Bela Bajnok, <a href="https://arxiv.org/abs/1705.07444">Additive Combinatorics: A Menu of Research Problems</a>, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.1.
%F For n >= 3, f(prime(n)) = A024698(n-1). - _Robert Israel_, Aug 16 2017
%p f:= n -> max(map(t -> (floor((t - 1 - igcd(t, 3))/4) + 1)*n/t, numtheory:-divisors(n))):
%p map(f, [$2..100]); # _Robert Israel_, Aug 16 2017
%t v[g_, n_, h_] := (d = Divisors[n]; Max[(Floor[(d - 1 - GCD[d, g])/h] + 1)*n/d]); Table[v[3, n, 4], {n, 2, 70}]
%Y Cf. A211316 (equals v_1(n,3)).
%Y Cf. A289435 - A289441.
%Y Cf. A024698.
%K nonn
%O 2,3
%A _Robert Price_, Aug 13 2017