login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290612
Number of maximal independent vertex sets (and minimal vertex covers) in the n-wheel graph.
0
4, 3, 6, 6, 8, 11, 13, 18, 23, 30, 40, 52, 69, 91, 120, 159, 210, 278, 368, 487, 645, 854, 1131, 1498, 1984, 2628, 3481, 4611, 6108, 8091, 10718, 14198, 18808, 24915, 33005, 43722, 57919, 76726, 101640, 134644, 178365, 236283, 313008, 414647, 549290, 727654, 963936
OFFSET
4,1
LINKS
Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set
Eric Weisstein's World of Mathematics, Minimal Vertex Cover
Eric Weisstein's World of Mathematics, Wheel Graph
FORMULA
a(n) = a(n-1) + a(n-2) - a(n-4).
G.f.: (x^3 (4 - x - x^2 - 3 x^3))/(1 - x - x^2 + x^4).
MATHEMATICA
Table[1 + RootSum[-1 - # + #^3 &, #^(n - 1) &], {n, 4, 20}]
LinearRecurrence[{1, 1, 0, -1}, {4, 3, 6, 6, 8}, 20]
CoefficientList[Series[(4 - x - x^2 - 3 x^3)/(1 - x - x^2 + x^4), {x, 0, 20}], x]
CROSSREFS
Sequence in context: A362449 A021233 A352922 * A292616 A071901 A266576
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Aug 07 2017
STATUS
approved