login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators in the expansion of the exponential generating function (1/2)*((1 + 3*x)/x)*(1 - (1 + 3*x)^(-4/3)).
2

%I #7 Sep 23 2017 04:56:32

%S 2,-1,14,-35,364,-14560,79040,-1521520,304304000,-852051200,

%T 24012352000,-2245154912000,25560225152000,-949379791360000,

%U 114305326879744000,-1643139073896320000,75777707878512640000,-33493746882302586880000,193911166160699187200000,-10684505255454525214720000,1862156630236360108851200000

%N Numerators in the expansion of the exponential generating function (1/2)*((1 + 3*x)/x)*(1 - (1 + 3*x)^(-4/3)).

%C The denominators are A038500(n+1), n >= 0.

%C This gives one half of the numerators of the z-sequence for the generalized unsigned Lah number Sheffer matrix Lah[3,2] = A290598.

%C For Sheffer a- and z-sequences see a W. Lang link under A006232 with the references for the Riordan case, and also the present link for a proof.

%H Wolfdieter Lang, <a href="/A290597/a290597.log.txt">Note on a- and z-sequences of Sheffer number triangles for certain generalized Lah numbers.</a>

%F a(n) = numerator(r(n)) with the rationals r(n) = [x^n/n!] (1/2)*((1 + 3*x)/x)*(1 - (1 + 3*x)^(-4/3)).

%F 2*a(n)/A038500(n+1) = z(3,2;n) = 4 for n = 0, and ((-1)^n/(n+1)*Product_{j=1..n} (1+3*j) = ((-1)^n/(n+1))*A007559(n+1) for n >= 1.

%e The rationals z(3,2;n) = 2*a(n)/A038500(n+1) begin:

%e {4, -2, 28/3, -70, 728, -29120/3, 158080, -3043040, 608608000/9, -1704102400, 48024704000, -4490309824000/3, ...}

%Y Cf. A007559, A038500, A290597 (z(3,1;n)), A290598.

%K sign,easy

%O 0,1

%A _Wolfdieter Lang_, Sep 13 2017