Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Aug 20 2017 06:32:11
%S 1,1,3,17,145,1661,23947,416765,8504865,199200985,5268047411,
%T 155282897065,5048546868209,179483438440021,6927036355244475,
%U 288439692143197397,12889578930617144641,615304922810783744561,31249797537098034966499,1682478707717022082757441,95721167135792642044679505,5738213812249917154871122861,361520344958259229318337826923,23881324878748364254507881173677
%N E.g.f. satisfies: A(x) = (1 + sin(x*A(x))) / cos(x*A(x)).
%C Equals row sums of irregular triangle A290580.
%C A diagonal in square array A185414.
%H Vaclav Kotesovec, <a href="/A290579/b290579.txt">Table of n, a(n) for n = 0..300</a>
%F E.g.f.: A(x) = (1/x) * Series_Reversion( x*cos(x)/(1 + sin(x)) ).
%F E.g.f. satisfies: A(x) = Sum_{n>=0} A000111(n) * x^n * A(x)^n / n!.
%F E.g.f.: A(x) = exp( sum_{n>=1} A185414(n,n)*x^n/n! ).
%F a(n) = A185414(n,n+1) for n>=1.
%F a(n) = [x^n/n!] ( (1 + sin(x)) / cos(x) )^(n+1) / (n+1) for n>=0.
%F a(n) ~ n^(n-1) / (exp(n) * r^(n+1/2)), where r = 0.3263879708167851846572540343... is the root of the equation r = 1 - sin(sqrt(r*(2-r))). - _Vaclav Kotesovec_, Aug 20 2017
%e E.g.f.: A(x) = 1 + x + 3*x^2/2! + 17*x^3/3! + 145*x^4/4! + 1661*x^5/5! + 23947*x^6/6! + 416765*x^7/7! + 8504865*x^8/8! +...
%e such that A(x) = (1 + sin(x*A(x))) / cos(x*A(x)).
%e RELATED SERIES.
%e (1 + sin(x)) / cos(x) = 1 + x + x^2/2! + 2*x^3/3! + 5*x^4/4! + 16*x^5/5! + 61*x^6/6! + 272*x^7/7! + 1385*x^8/8! +...+ A000111(n)*x^n/n! +...
%e where A000111 is the sequence of zigzag numbers.
%e Given e.g.f. A(x), then the logarithm of A(x) begins:
%e log(A(x)) = x + 2*x^2/2! + 10*x^3/3! + 80*x^4/4! + 880*x^5/5! + 12336*x^6/6! + 210320*x^7/7! + 4225024*x^8/8! +...+ A185414(n,n)*x^n/n! +...
%o (PARI) {a(n) = my(A=1); for(i=0,n, A = (1 + sin(x*A)) / cos(x*A +x*O(x^n)) ); n!*polcoeff(A,n)}
%o for(n=0,25, print1(a(n),", "))
%o (PARI) {a(n) = my(X=x +O(x^(n+2))); A = (1/x) * serreverse( x*cos(X)/(1 + sin(X)) ); n!*polcoeff(A,n)}
%o for(n=0,25, print1(a(n),", "))
%Y Cf. A000111, A290580, A185414.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Aug 06 2017