login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - x/(1 - 2^k*x/(1 - 3^k*x/(1 - 4^k*x/(1 - 5^k*x/(1 - ...)))))).
5

%I #31 Aug 22 2017 21:19:07

%S 1,1,1,1,1,2,1,1,3,5,1,1,5,15,14,1,1,9,61,105,42,1,1,17,297,1385,945,

%T 132,1,1,33,1585,24273,50521,10395,429,1,1,65,8865,485729,3976209,

%U 2702765,135135,1430,1,1,129,50881,10401345,372281761,1145032281,199360981,2027025,4862

%N Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 - x/(1 - 2^k*x/(1 - 3^k*x/(1 - 4^k*x/(1 - 5^k*x/(1 - ...)))))).

%F G.f. of column k: 1/(1 - x/(1 - 2^k*x/(1 - 3^k*x/(1 - 4^k*x/(1 - 5^k*x/(1 - ...)))))), a continued fraction.

%e G.f. of column k: A_k(x) = 1 + x + (2^k + 1)*x^2 + (2^(k+1) + 4^k + 6^k + 1)*x^3 + ...

%e Square array begins:

%e : 1, 1, 1, 1, 1, 1, ...

%e : 1, 1, 1, 1, 1, 1, ...

%e : 2, 3, 5, 9, 17, 33, ...

%e : 5, 15, 61, 297, 1585, 8865, ...

%e : 14, 105, 1385, 24273, 485729, 10401345, ...

%e : 42, 945, 50521, 3976209, 372281761, 38103228225, ...

%t Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-i^k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 9}, {n, 0, j}] // Flatten

%Y Columns k=0-4 give: A000108, A001147, A000364, A216966, A227887.

%Y Main diagonal gives A291333.

%Y Cf. A000051 (row 2).

%K nonn,tabl

%O 0,6

%A _Ilya Gutkovskiy_, Aug 08 2017