login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

One of the two successive approximations up to 7^n for the 7-adic integer sqrt(2). These are the numbers congruent to 4 mod 7 (except for the initial 0).
10

%I #27 Dec 04 2022 12:39:40

%S 0,4,39,235,235,12240,79468,667713,3961885,15491487,15491487,15491487,

%T 7924798459,77131234464,561576286499,4630914723593,23621160763365,

%U 189785813611370,1352938383547405,4609765579368303,4609765579368303,403571097067428308

%N One of the two successive approximations up to 7^n for the 7-adic integer sqrt(2). These are the numbers congruent to 4 mod 7 (except for the initial 0).

%C x = ...450454,

%C x^2 = ...000002 = 2.

%H Seiichi Manyama, <a href="/A290559/b290559.txt">Table of n, a(n) for n = 0..1183</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Hensel%27s_lemma">Hensel's Lemma</a>.

%F If n > 0, a(n) = 7^n - A290557(n).

%F a(0) = 0 and a(1) = 4, a(n) = a(n-1) + 6 * (a(n-1)^2 - 2) mod 7^n for n > 1.

%F a(n) == 2*T(7^n, 2) (mod 7^n) == (2 + sqrt(3))^(7^n) + (2 - sqrt(3))^(7^n) (mod 7^n), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. - _Peter Bala_, Dec 03 2022

%e a(1) = ( 4)_7 = 4,

%e a(2) = ( 54)_7 = 39,

%e a(3) = ( 454)_7 = 235,

%e a(4) = ( 454)_7 = 235,

%e a(5) = (50454)_7 = 12240.

%o (PARI) a(n) = if (n==0, 0, 7^n - truncate(sqrt(2+O(7^n)))); \\ _Michel Marcus_, Aug 06 2017

%Y Cf. A051277, A290557, A290558.

%K nonn,easy

%O 0,2

%A _Seiichi Manyama_, Aug 05 2017