login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 833", based on the 5-celled von Neumann neighborhood.
4

%I #11 Aug 05 2017 09:47:40

%S 1,1,101,1111,11,111111,111,11111111,1111,1111111111,11111,

%T 111111111111,111111,11111111111111,1111111,1111111111111111,11111111,

%U 111111111111111111,111111111,11111111111111111111,1111111111,1111111111111111111111,11111111111

%N Binary representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 833", based on the 5-celled von Neumann neighborhood.

%C Initialized with a single black (ON) cell at stage zero.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

%H Robert Price, <a href="/A290526/b290526.txt">Table of n, a(n) for n = 0..126</a>

%H Robert Price, <a href="/A290526/a290526.tmp.txt">Diagrams of first 20 stages</a>

%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Conjectures from _Colin Barker_, Aug 05 2017: (Start)

%F G.f.: (1 - 10*x^2 + 1010*x^3 - 11100*x^4 + 110000*x^6 - 100000*x^7) / ((1 - x)*(1 - 10*x)*(1 + 10*x)*(1 - 10*x^2)).

%F a(n) = a(n-1) + 110*a(n-2) - 110*a(n-3) - 1000*a(n-4) + 1000*a(n-5) for n>4.

%F (End)

%t CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];

%t code = 833; stages = 128;

%t rule = IntegerDigits[code, 2, 10];

%t g = 2 * stages + 1; (* Maximum size of grid *)

%t a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)

%t ca = a;

%t ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];

%t PrependTo[ca, a];

%t (* Trim full grid to reflect growth by one cell at each stage *)

%t k = (Length[ca[[1]]] + 1)/2;

%t ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];

%t Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

%Y Cf. A290525, A290527, A290528.

%K nonn,easy

%O 0,3

%A _Robert Price_, Aug 04 2017