login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that (sum of proper unitary divisors of k) > (sum of proper unitary divisors of m) for all m < k.
1

%I #19 Jul 23 2021 02:08:45

%S 1,2,6,10,14,18,22,26,30,42,60,66,78,102,114,138,150,174,186,210,330,

%T 390,462,510,546,570,690,798,858,870,930,1050,1110,1218,1230,1290,

%U 1410,1470,1590,1722,1770,1830,2010,2130,2190,2310,2730,3570,3990,4290,4830,5610,6006,6090,6510,7410,7590,7770

%N Numbers k such that (sum of proper unitary divisors of k) > (sum of proper unitary divisors of m) for all m < k.

%C Numbers k such that A034460(k) > A034460(m) for all m < k.

%H Amiram Eldar, <a href="/A290490/b290490.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/UnitaryDivisor.html">Unitary Divisor</a>

%H <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>

%t mx = -1; t = {}; Do[u = DivisorSum[n, # &, GCD[#, n/#] == 1 &] - n; If[u > mx, mx = u; AppendTo[t, n]], {n, 8000}]; t

%o (PARI) sumud(n) = sumdiv(n, d, if (gcd(d, n/d)==1, d)) - n;

%o lista(nn) = {lasts = -1; for (n=1, nn, if ((news = sumud(n)) > lasts, print1(n, ", "); lasts = news););} \\ _Michel Marcus_, Aug 04 2017

%Y Cf. A002182, A002093, A034090, A034448, A034460, A063919, A280013, A281782, A285614.

%K nonn

%O 1,2

%A _Ilya Gutkovskiy_, Aug 03 2017