Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Aug 06 2017 22:46:47
%S 3,7,15,59,143,367,1039,2755,7395,20007,53727,144635,389535,1048159,
%T 2821535,7595267,20443523,55029319,148125295,398712379,1073232175,
%U 2888862159,7776059055,20931132355,56341155043,151655701607,408217663167,1098815603707,2957725352255
%N Number of minimal edge covers in the n-Moebius ladder.
%H Andrew Howroyd, <a href="/A290470/b290470.txt">Table of n, a(n) for n = 1..200</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EdgeCover.html">Edge Cover</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MinimalEdgeCover.html">Minimal Edge Cover</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MoebiusLadder.html">Moebius Ladder</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1, 2, 6, 2, 2, -2, -2, -1, 1).
%F From _Andrew Howroyd_, Aug 04 2017: (Start)
%F a(n) = a(n-1) + 2*a(n-2) + 6*a(n-3) + 2*a(n-4) + 2*a(n-5) - 2*a(n-6) - 2*a(n-7) - a(n-8) + a(n-9) for n > 9.
%F G.f.: x*(1 + x)*(1 + 4*x^3 - 3*x^4)*(3 + x + x^2 - x^3)/((1 + x^2)*(1 + x + x^2 - x^3)*(1 - 2*x - 2*x^2 + x^4)).
%F (End)
%t Table[2 Cos[n Pi/2] - RootSum[-1 + # + #^2 + #^3 &, #^n &] +
%t RootSum[1 - 2 #^2 - 2 #^3 + #^4 &, #^n &], {n, 20}]
%t LinearRecurrence[{1, 2, 6, 2, 2, -2, -2, -1, 1}, {3, 7, 15, 59, 143, 367, 1039, 2755, 7395}, 20]
%t CoefficientList[Series[-(((1 + x) (-3 - x - x^2 + x^3) (-1 - 4 x^3 + 3 x^4))/((1 + x^2) (-1 - x - x^2 + x^3) (1 - 2 x - 2 x^2 + x^4))), {x, 0, 20}], x]
%o (PARI) Vec((1 + x)*(1 + 4*x^3 - 3*x^4)*(3 + x + x^2 - x^3)/((1 + x^2)*(1 + x + x^2 - x^3)*(1 - 2*x - 2*x^2 + x^4)) + O(x^30)) \\ _Andrew Howroyd_, Aug 04 2017
%Y Cf. A020866, A020877, A020878, A284710.
%K nonn
%O 1,1
%A _Eric W. Weisstein_, Aug 03 2017
%E a(1)-a(2) and terms a(9) and beyond from _Andrew Howroyd_, Aug 04 2017