login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290414
Decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 785", based on the 5-celled von Neumann neighborhood.
4
1, 2, 5, 14, 25, 63, 112, 255, 480, 1023, 1984, 4095, 8064, 16383, 32512, 65535, 130560, 262143, 523264, 1048575, 2095104, 4194303, 8384512, 16777215, 33546240, 67108863, 134201344, 268435455, 536838144, 1073741823, 2147418112, 4294967295, 8589803520
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Jul 31 2017: (Start)
G.f.: (1 - 2*x^2 + 4*x^3 - 4*x^4 + x^5 - 3*x^6 + 6*x^8 - 4*x^9) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = 2^(n/2+1)*(2^(n/2) - 1) for n>4 and even.
a(n) = 2^(n+1) - 1 for n>4 and odd.
a(n) = 2*a(n-1) + 3*a(n-2) - 6*a(n-3) - 2*a(n-4) + 4*a(n-5) for n>6.
(End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 785; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jul 30 2017
STATUS
approved