login
A290414
Decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 785", based on the 5-celled von Neumann neighborhood.
4
1, 2, 5, 14, 25, 63, 112, 255, 480, 1023, 1984, 4095, 8064, 16383, 32512, 65535, 130560, 262143, 523264, 1048575, 2095104, 4194303, 8384512, 16777215, 33546240, 67108863, 134201344, 268435455, 536838144, 1073741823, 2147418112, 4294967295, 8589803520
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Jul 31 2017: (Start)
G.f.: (1 - 2*x^2 + 4*x^3 - 4*x^4 + x^5 - 3*x^6 + 6*x^8 - 4*x^9) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - 2*x^2)).
a(n) = 2^(n/2+1)*(2^(n/2) - 1) for n>4 and even.
a(n) = 2^(n+1) - 1 for n>4 and odd.
a(n) = 2*a(n-1) + 3*a(n-2) - 6*a(n-3) - 2*a(n-4) + 4*a(n-5) for n>6.
(End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 785; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jul 30 2017
STATUS
approved