login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of minimal dominating sets in the n-antiprism graph.
4

%I #13 Aug 04 2017 03:15:16

%S 4,15,12,25,55,112,188,438,789,1573,3135,5980,11848,23035,45020,87873,

%T 171910,335464,655397,1281190,2501173,4888098,9548543,18653025,

%U 36441500,71190933,139076320,271694910,530784135,1036914040,2025703900,3957367099,7731003525

%N Number of minimal dominating sets in the n-antiprism graph.

%H Andrew Howroyd, <a href="/A290377/b290377.txt">Table of n, a(n) for n = 2..200</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AntiprismGraph.html">Antiprism Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MinimalDominatingSet.html">Minimal Dominating Set</a>

%F Empirical: a(n) = 2*a(n-2)+5*a(n-3)+a(n-4) -5*a(n-5)-8*a(n-6)+a(n-7) +6*a(n-8)+10*a(n-9)-2*a(n-10) -2*a(n-11)-5*a(n-12)+a(n-15) for n>16. - _Andrew Howroyd_, Aug 01 2017

%F Empirical g.f.: x^2*(4 + 15*x + 4*x^2 - 25*x^3 - 48*x^4 + 7*x^5 + 48*x^6 + 90*x^7 - 20*x^8 - 22*x^9 - 60*x^10 + 15*x^13) / (1 - 2*x^2 - 5*x^3 - x^4 + 5*x^5 + 8*x^6 - x^7 - 6*x^8 - 10*x^9 + 2*x^10 + 2*x^11 + 5*x^12 - x^15). - _Colin Barker_, Aug 01 2017

%Y Cf. A284699, A290336.

%K nonn

%O 2,1

%A _Eric W. Weisstein_, Jul 28 2017

%E a(2) and terms a(8) and beyond from _Andrew Howroyd_, Aug 01 2017