login
a(n) is the n-th term of the n-th Euler transform of the sequence with g.f. 1+x.
5

%I #26 Jun 21 2018 18:22:38

%S 1,1,2,6,30,170,1337,12166,133476,1676364,23970089,383172262,

%T 6783362586,131697494825,2783238819896,63605879539200,

%U 1563127601683456,41107799958703376,1151957989511106438,34268629198432285436,1078577860182473404134,35809701458658690462644

%N a(n) is the n-th term of the n-th Euler transform of the sequence with g.f. 1+x.

%C a(n) is also the number of unlabeled rooted trees with exactly n leaves, all in level n. a(3) = 6:

%C : o o o o o o

%C : | | | / \ / \ /|\

%C : o o o o o o o o o o

%C : | / \ /|\ | | ( ) | | | |

%C : o o o o o o o o o o o o o o

%C : /|\ ( ) | | | | ( ) | | | | | | |

%C : o o o o o o o o o o o o o o o o o o

%H Alois P. Heinz, <a href="/A290354/b290354.txt">Table of n, a(n) for n = 0..414</a>

%H B. A. Huberman and T. Hogg, <a href="https://doi.org/10.1016/0167-2789(86)90308-1">Complexity and adaptation</a>, Evolution, games and learning (Los Alamos, N.M., 1985). Phys. D 22 (1986), no. 1-3, 376-384.

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%F a(n) = A290353(n,n).

%F Conjecture: a(n) ~ c * 2^n * n^(n-4/3) / Pi^n, where c = 4.4923... - _Vaclav Kotesovec_, Aug 14 2017

%p with(numtheory):

%p b:= proc(n, k) option remember; `if`(n<2, 1, `if`(k=0, 0, add(

%p add(b(d, k-1)*d, d=divisors(j))*b(n-j, k), j=1..n)/n))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..25);

%t b[n_, k_]:=b[n, k]=If[n<2, 1, If[k==0, 0, Sum[Sum[b[d, k - 1]*d, {d, Divisors[j]}] b[n - j, k], {j, n}]/n]]; Table[b[n, n], {n, 0, 30}] (* _Indranil Ghosh_, Jul 30 2017, after Maple code *)

%Y Main diagonal of A290353.

%Y Cf. A139383, A305725.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Jul 28 2017