

A290334


Numbers that are not the sum of three or fewer terms from A020330.


5



1, 2, 4, 5, 7, 8, 11, 12, 14, 17, 19, 22, 24, 26, 27, 29, 31, 32, 34, 37, 38, 41, 43, 44, 47, 50, 52, 53, 59, 62, 68, 71, 77, 80, 85, 86, 89, 92, 94, 95, 97, 98, 101, 103, 104, 106, 107, 110, 112, 113, 115, 116, 119, 121, 122, 124, 125, 128, 130, 131, 133, 134, 137, 138, 140, 143, 145, 147, 148, 150, 152, 155, 157, 158, 160, 164, 165
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Not currently proved that there are infinitely many terms. It is conjectured that all integers > 686 are the sum of four binary squares.


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000
Aayush Rajasekaran, Jeffrey Shallit and Tim Smith, Sums of Palindromes: an Approach via NestedWord Automata, in: Rolf Niedermeier and Brigitte VallĂ©e, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018), Schloss Dagstuhl, 2018, pp. 54:154:12; arXiv preprint, arXiv:1706.10206 [cs.FL], June 30 2017.


MATHEMATICA

v = Table[n + n * 2^Floor[Log2[n] + 1], {n, 0, 12}]; Complement[Range[v[[1]]], Plus @@@ Tuples[v, 3]] (* Amiram Eldar, Apr 09 2021 *)


CROSSREFS

Cf. A020330, A290335, A298731.
Sequence in context: A187576 A188298 A289129 * A206285 A229303 A262978
Adjacent sequences: A290331 A290332 A290333 * A290335 A290336 A290337


KEYWORD

nonn


AUTHOR

Jeffrey Shallit, Jul 27 2017


STATUS

approved



