login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Determinant of circulant matrix of order 4 with entries in the first row (-1)^j*Sum_{k>=0}(-1)^k*binomial(n, 4*k+j), j=0,1,2,3.
4

%I #30 Apr 12 2021 08:32:15

%S 1,0,0,0,-1008,-37120,-473600,0,63996160,702013440,2893578240,0,

%T -393379835904,-12971004067840,-160377313820672,0,21792325059543040,

%U 239501351489372160,987061897553510400,0,-134124249770961666048,-4422152303189489090560

%N Determinant of circulant matrix of order 4 with entries in the first row (-1)^j*Sum_{k>=0}(-1)^k*binomial(n, 4*k+j), j=0,1,2,3.

%C In the Shevelev link the author proved that, for odd N>=3 and every n>=1, the determinant of circulant matrix of order N with entries in the first row (-1)^j*Sum{k>=0}(-1)^k*binomial(n, N*k+j), j=0..N-1, is 0.

%C This sequence shows what happens for the first even N>3.

%H Vladimir Shevelev, <a href="https://arxiv.org/abs/1706.01454">Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n</a>, arXiv:1706.01454 [math.CO], 2017.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Circulant_matrix">Circulant matrix</a>

%F a(n) = 0 for n == 3 (mod 4).

%F G.f. (empirical): (1/8)*(68*x^2+1)/(16*x^4+136*x^2+1)+(1/4)*(68*x^2-8*x+1)/(16*x^4+64*x^3+128*x^2-16*x+1)+(1/2)*(12*x^2+1)/(16*x^4+24*x^2+1)+3/(8*(4*x^2+1))-(1/4)*(12*x^2-4*x+1)/(16*x^4-32*x^3+32*x^2-8*x+1)-(1/4)*(4*x^2+1)/(16*x^4+1)+(1/4)*(12*x^2+4*x+1)/(16*x^4+32*x^3+32*x^2+8*x+1). - _Robert Israel_, Jul 26 2017

%p seq(LinearAlgebra:-Determinant(Matrix(4,shape=Circulant[seq((-1)^j*

%p add((-1)^k*binomial(n, 4*k+j),k=0..n/4),j=0..3)])),n=0..50); # _Robert Israel_, Jul 26 2017

%t ro[n_] := Table[Sum[(-1)^(j+k) Binomial[n, 4k+j], {k, 0, n/4}], {j, 0, 3}];

%t M[n_] := Table[RotateRight[ro[n], m], {m, 0, 3}];

%t a[n_] := Det[M[n]];

%t Table[a[n], {n, 0, 21}] (* _Jean-François Alcover_, Aug 09 2018 *)

%o (Python)

%o from sympy.matrices import Matrix

%o from sympy import binomial

%o def mj(j, n): return (-1)**j*sum((-1)**k*binomial(n, 4*k + j) for k in range(n//4 + 1))

%o def a(n):

%o m=Matrix(4, 4, lambda i,j: mj((i-j)%4,n))

%o return m.det()

%o print([a(n) for n in range(22)]) # _Indranil Ghosh_, Jul 31 2017

%Y Cf. A099586 (prefixed by a(0)=1), A099587, A099588, A099589, A290285.

%K sign

%O 0,5

%A _Vladimir Shevelev_ and _Peter J. C. Moses_, Jul 26 2017