Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jan 04 2023 21:08:24
%S 1,1,28,3740,1161678,741215012,840790914296,1439884504332480,
%T 3576753835657635164,12524266750764601753576,
%U 59517682037036901339560926,363169855509323114958694015304,2774932810808589820997792848479674,26216044235174202943266623056680424524
%N Number of solid standard Young tableaux of cylindrical shape lambda X 4, where lambda ranges over all partitions of n.
%H S. B. Ekhad and D. Zeilberger, <a href="https://arxiv.org/abs/1202.6229">Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux</a>, arXiv:1202.6229 [math.CO], 2012.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Young_tableau">Young tableau</a>
%p b:= proc(l) option remember; local m; m:= nops(l);
%p `if`({map(x-> x[], l)[]}minus{0}={}, 1, add(add(`if`(l[i][j]>
%p `if`(i=m or nops(l[i+1])<j, 0, l[i+1][j]) and l[i][j]>
%p `if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop(
%p j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m))
%p end:
%p g:= proc(n, i, l) `if`(n=0 or i=1, b(map(x->[4$x], [l[], 1$n])),
%p add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))
%p end:
%p a:= n-> g(n$2, []):
%p seq(a(n), n=0..8);
%t b[l_] := b[l] = With[{m = Length[l]}, If[Union[l // Flatten] ~Complement~ {0} == {}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i + 1]]] < j, 0, l[[i + 1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j + 1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]] - 1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]]];
%t g[n_, i_, k_, l_] := If[n == 0 || i == 1, b[Table[k, {#}] & /@ Join[l, Table[1, {n}]]], Sum[g[n - i*j, i - 1, k, Join[l, Table[i, {j}]]], {j, 0, n/i}]];
%t a[n_] := g[n, n, 4, {}];
%t Table[a[n], {n, 0, 10}] (* _Jean-François Alcover_, Dec 28 2022, after _Alois P. Heinz_ in A215204 *)
%Y Column k=4 of A215204.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Jul 24 2017