login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers m having greatest prime power divisor d such that d is smaller than the difference between m and the largest prime smaller than m.
2

%I #44 Jun 26 2019 09:30:26

%S 126,210,330,630,1144,1360,2520,2574,2992,3432,3960,4199,4620,5544,

%T 5610,5775,5980,6006,6930,7280,8008,8415,9576,10005,10032,12870,12880,

%U 13090,14280,14586,15708,15725,16182,17290,18480,18837,19635,19656,20475,20592,22610

%N Numbers m having greatest prime power divisor d such that d is smaller than the difference between m and the largest prime smaller than m.

%C It is conjectured that for all integers m there exist two primes p and r such that all the binomial coefficients (m,k) with 1 <= k <= m-1 are divisible by either p or r. Using Lucas's Theorem we can prove that the conjecture is true for integers m such that the difference between m and the largest prime smaller than m is smaller than the greatest prime power divisor of m. Therefore this list examines the numbers m that do not satisfy this property.

%C Also numbers m such that m - A007917(m) > A034699(m). - _David A. Corneth_, Jul 24 2017

%H Charles R Greathouse IV, <a href="/A290203/b290203.txt">Table of n, a(n) for n = 1..10000</a>

%H Sílvia Casacuberta Puig, <a href="https://math.mit.edu/research/highschool/rsi/documents/2017Puig.pdf">On the divisibility of binomial coefficients</a>, 2018; see <a href="https://arxiv.org/abs/1906.07652">also</a>, arXiv:1906.07652 [math.NT], 2019.

%H E. Kummer, <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002147432">Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen</a>, Journal für die reine und angewandte Mathematik, 44:93-146, 1852.

%H E. Lucas, <a href="http://www.jstor.org/stable/2369308">Théorie des fonctions numériques simplement périodiques</a>, American Journal of Mathematics, 44:184-196, 1878.

%H J. Shareshian and R. Woodroofe, <a href="https://arxiv.org/abs/1505.05143">Divisibility of binomial coefficients and generation of alternating groups</a>, arXiv:1505.05143 [math.CO], 2015-2017.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Kummer%27s_theorem">Kummer's Theorem</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lucas%27s_theorem">Lucas' Theorem</a>

%e The first number of the sequence is 126. The prime factorization of 126 is 2*3^2*7. Therefore, the greatest prime power divisor is 9. The largest prime smaller than 126 is 113, and then the difference between 126 and 113 is 13. Then 13 is larger than 9 and therefore 126 is part of the sequence.

%t Reap[For[k = 3, k < 30000, k++, If[k - NextPrime[k, -1] > Max[Power @@@ FactorInteger[k]], Print[k]; Sow[k]]]][[2, 1]] (* _Jean-François Alcover_, Jul 24 2017 *)

%o (PARI) isok(n)=my(f = factor(n)); n - precprime(n) > vecmax(vector(#f~, k, f[k,1]^f[k,2])); \\ _Michel Marcus_, Jul 24 2017

%o (PARI) list(lim)=my(v=List(),p=2,f); forfactored(n=3,lim\1, f=n[2]; if(f[,2]==[1]~, p=n[1]; next); if(n[1]-p > vecmax(vector(#f~, i, f[i,1]^f[i,2])), listput(v,n[1]))); Vec(v) \\ _Charles R Greathouse IV_, Jul 24 2017

%Y Cf. A007917, A034699, A081805.

%K nonn

%O 1,1

%A _Sílvia Casacuberta Puig_, Jul 24 2017