Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Nov 11 2021 11:29:45
%S 1,1,2,1,3,2,4,1,2,3,5,2,6,4,6,1,7,2,8,3,4,5,9,2,3,6,2,4,10,6,11,1,10,
%T 7,12,2,12,8,6,3,13,4,14,5,6,9,15,2,4,3,14,6,16,2,15,4,8,10,17,6,18,
%U 11,4,1,6,10,19,7,18,12,20,2,21,12,6,8,20,6,22,3,2,13,23,4,21,14,10,5,24,6,12,9,22,15,24,2,25,4,10,3,26,14,27,6,12
%N a(n) = LCM of the prime indices in prime factorization of n, a(1) = 1.
%H Antti Karttunen, <a href="/A290103/b290103.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F a(1) = 1; for n > 1, a(n) = lcm(A055396(n), a(A028234(n)).
%F Other identities. For all n >= 1:
%F a(A007947(n)) = a(n).
%F a(A181819(n)) = A072411(n).
%e Here primepi (A000720) gives the index of its prime argument:
%e n = 14 = 2 * 7, thus a(14) = lcm(primepi(2), primepi(7)) = lcm(1,4) = 4.
%e n = 21 = 3 * 7, thus a(21) = lcm(primepi(3), primepi(7)) = lcm(2,4) = 4.
%t Table[Apply[LCM, PrimePi[FactorInteger[n][[All, 1]] ]] + Boole[n == 1], {n, 105}] (* _Michael De Vlieger_, Aug 14 2017 *)
%o (Scheme) (define (A290103 n) (if (= 1 n) n (lcm (A055396 n) (A290103 (A028234 n))))) ;; _Antti Karttunen_, Aug 13 2017
%o (PARI) a(n)=if(n>1, lcm(apply(primepi, factor(n)[,1])), 1) \\ _Charles R Greathouse IV_, Nov 11 2021
%Y Cf. A000040, A000720, A003963, A007947, A156061, A290104, A290105.
%Y Cf. also A072411, A181819.
%K nonn
%O 1,3
%A _Antti Karttunen_, Aug 13 2017