login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290071
a(n) = (1/48)*n*(n+5)^2*(1*n^3 + 7*n^2 + 16*n + 28).
3
0, 39, 196, 664, 1809, 4250, 8954, 17346, 31434, 53949, 88500, 139744, 213571, 317304, 459914, 652250, 907284, 1240371, 1669524, 2215704, 2903125, 3759574, 4816746, 6110594, 7681694, 9575625, 11843364, 14541696, 17733639, 21488884, 25884250, 31004154, 36941096
OFFSET
0,2
FORMULA
From Colin Barker, Jul 20 2017: (Start)
G.f.: x*(39 - 77*x + 111*x^2 - 88*x^3 + 36*x^4 - 6*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 6.
(End)
MATHEMATICA
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 39, 196, 664, 1809, 4250, 8954}, 40] (* Harvey P. Dale, Nov 15 2022 *)
PROG
(PARI) concat(0, Vec(x*(39 - 77*x + 111*x^2 - 88*x^3 + 36*x^4 - 6*x^5) / (1 - x)^7 + O(x^50))) \\ Colin Barker, Jul 20 2017
(PARI) vector(50, n, n*(n+5)^2*(n^3+7*n^2+16*n+28)/48) \\ Derek Orr, Jul 24 2017
CROSSREFS
This is the negation of column 4 in triangle A290053.
Sequence in context: A193228 A243578 A124619 * A221797 A068975 A177709
KEYWORD
nonn,easy
AUTHOR
STATUS
approved